protein sentezi tüm canlılarda ortak mıdır / Protein Sentezi | selinhoca

Protein Sentezi Tüm Canlılarda Ortak Mıdır

protein sentezi tüm canlılarda ortak mıdır

1) HÜCRESEL YAPI:

Tüm canlılarda temel yapı ve görev birimi hücredir. Canlılar hücre sayılarına ve hücre yapılarına göre gruplandırılır.

 

✔ Bakteriler ve arkeler prokaryot hücre yapısına sahipken bunlar dışında kalan canlılar (protista, mantar, bitki ve hayvan) ökaryot hücre yapısına sahiptir.

✔ Tüm prokaryotlar tek hücreliyken ökaryotlar tek ya da çok hücreli olabilir. 

 

Her canlı hücrelerden oluştuğu gibi her canlının hücresinin içeriği de büyük ölçüde birbirine benzer. Tüm canlı hücrelerde karbonhidrat, protein, yağ, su, mineral ve nükleik asit belirli oranlarda bulunur.

2) BESLENME:

Canlılar hayatsal faaliyetleri için gerekli olan enerjiyi elde edebilmek için beslenmek zorundadır. Beslenme açısından canlılar üç gruba ayrılır. 

a) Ototrof Beslenme:

Besinini kendi üreten canlıların yapmış olduğu beslenmedir. Bu canlılar besini dışarıdan hazır almazlar sadece besini üretmek için gerekli olan ham maddeyi (inorganik madde) dışarıdan alırlar.

✔ Ototrof beslenme de iki farklı mekanizma ile besin üretilir. Bu mekanizmalar fotosentez ve kemosentezdir. Fotosentez yaparak besin üreten canlılarda klorofil bulunur.

✔ Fotosentez yapan canlılarda klorofil pigmenti bulunur. Işık enerjisini kullanarak organik maddelerini üretebilirler.

✔ Kemosentez yapan canlılar inorganik maddeyi okside ederek elde ettikleri enerji ile organik madde sentezlerler. Sadece prokaryot canlılarda görülür.

 

b) Heterotrof Beslenme: 

Besinini dışarıdan hazır alan canlıların yaptığı beslenmedir. Heterotrof beslenme çok çeşitlidir.

 

c) Hem Ototrof Hem Heterotrof Beslenme:

Gerektiğinde besinini dışarıdan hazır alan gerektiğinde besinini üretebilen canlıların yapmış olduğu beslenmedir. Bu canlıların ototrof beslenme mekanizması fotosentez ile olur.

 

3) HÜCRESEL SOLUNUM: 

Canlılar hayatlarına devam edebilmek için gerekli olan enerjiyi besinlerden karşılar. Besinin yapısında bulunan enerjiyi kullanılabilir hale getirmek için de hücresel solunum yaparlar. Hücresel solunum temel olarak üç şekilde gerçekleşir.

 

a) Oksijenli Solunum: 

Besinin parçalanması sürecinde oksijenin kullanıldığı hücresel solunumdur. Diğer hücresel solunumlara göre daha fazla enerji üretilir.

 

b) Oksijensiz Solunum:

Besinin parçalanma sürecinde oksijen dışında bir inorganik maddenin kullanıldığı hücresel solunumdur

(N ve S gibi). Sadece prokaryot hücreli canlıların bazılarında görülür.

c) Fermantasyon:

Besinin parçalanma sürecinde herhangi bir inorganik madde kullanılmadan, besinin kısmen parçalanmasıdır. Enerji üretimi çok düşüktür.

4) BÜYÜME VE GELİŞME: 

Büyüme ve gelişme birbirini beraber takip eden bir süreçtir.

 

✔ Büyüme, canlıların kütle ve hacimlerinin artışıdır. Çok hücreli canlılarda, hem hücre sayısının artması hem de hücre hacminin artması ile gerçekleşir. Tek hücreli canlılarda ise hücre sayısının artması büyüme olarak kabul edilemez. Bu durum tek hücreli canlının üremesi anlamına gelir. 

✔ Gelişme, çok hücrelilerde zigottan itibaren ergin birey oluşana kadar geçen süreçtir. Çok hücreli canlılarda bu süreç hücrelerin bölünmesi ve farklılaşması ile olur. Tek hücreli canlılarda ise embriyonik gelişim görülmezken; gelişim, hücre düzeyinde basitçe gerçekleşir.

5) HAREKET:

Tüm canlılar hareket edebilir. Bu hareket mekanizması bütün canlılarda aynı şekilde olmaz. Bazı canlılar yer değiştirme hareketi yaparken bazıları sadece belirli yapılarını hareket ettirebilir ya da yaşadığı çevrenin hareketi sayesinde yer değiştirebilir. Tek hücreli canlıların bazılarında kamçı, sil ya da yalancı ayak gibi yapılar bulunur. Bu yapılarını kullanarak aktif olarak hareket ederler. Bitkilerde ise yer değiştirme hareketi görülmez. Çeşitli sebepler nedeni ile tropizma (yönelme) ve nasti (irkilme) hareketler görülür.

 

6) METABOLİZMA:

Canlılarda meydana gelen hayatsal faaliyetlerin tamamıdır. Metabolizma anabolizma ve katabolizma olmak üzere ikiye ayrılır.

a) Anabolizma:

Canlıda meydana gelen yapım olaylarıdır. (özümleme, asimilasyon) Anabolizma olayları gerçekleştirilirken canlı enerji harcar.  Canlı yaşlandıkça anabolizma olayları azalmaya başlar.
Örnek; dehidrasyon, fotosentez, kemosentez…

 

b) Katabolizma:

Canlıda meydana gelen yıkım olaylarıdır (yadımlama, disimilasyon). Canlı yaşlandıkça katabolizma olayları artmaya başlar.
Örnek; hidroliz, solunum…

 

Hidroliz sırasında ATP enerjisi harcanmazken, solunumda çok az enerji harcanır. Solunumun sonucunda ise enerji üretilir.

Bazal Metabolizma:

Bir canlının sadece yaşamını devam ettirebilmek için gerekli olan metabolizmadır.
Örnek; yaprak dökmüş bir bitki, endospor halindeki bakteri, çimlenmemiş bir tohum, kış uykusuna yatmış bir kurbağa… bazal metabolizma halindedir.

 

✔ İnsanlarda bazal metabolizma hızı; sağlıklı bir halde, üzerinde terletmeyecek ya da üşütmeyecek giysiler ile son yemeğinin üstünden en az 12 saat geçmiş bir şekilde sırt üstü yatarak ölçülür.

7) BOŞALTIM:

Canlıların metabolizma sonucu oluşan atık maddelerini vücudundan uzaklaştırılmasıdır.

 

✔ Her canlı atık madde oluşturmak zorundadır. Ancak bu atık maddelerin vücuttan uzaklaştırılması farklı mekanizmalar ile gerçekleşebilir.

 

✔ Tek hücreli canlılar amonyak ve karbondioksit gibi atıklarını hücre zarı yüzeyinden uzaklaştırır.

 

✔ Tatlı suda yaşayan tek hücreliler kontraktil kofullarını kullanarak vücutlarındaki fazla suyu dışarı atarlar.

 

✔ Bitkiler yaprak dökerek boşaltım yaparlar. Ayrıca farklı mekanizmaları da kullanırlar (terleme, gutasyon).

✔ Hayvanlar farklı mekanizmalar kullanarak boşaltım yaparlar. Bu mekanizmalar; karbondioksit solunum sistemi ile su ve suda çözünmüş atık maddeler böbrekler ve ter ile sindirilmemiş besinler ise dışkı halinde sindirim sisteminden uzaklaştırılır. Ayrıca bazı gelişmemiş hayvanlarda vücut yüzeyinden atık maddeler vücut dışına atılır.

 

✔ Canlıların hepsi metabolizması sonucu azotlu boşaltım atığı oluşturarak, kendilerine uygun boşaltım mekanizması ile bu maddeleri uzaklaştırır.

8) ÜREME:

Canlılar nesillerini devam ettirebilmek için kendilerine benzer yavrular meydana getirirler. Üreme canlının ortak özelliğidir. Ancak yaşam için zorunlu değildir. Üreme temel olarak iki çeşittir. 

 

a) Eşeysiz Üreme:

Canlının üreme için başka bir canlıya ihtiyacı olmadan yaptığı üremedir. Genellikle gelişmemiş canlılarda görülür. Genellikle genetik çeşitlenmeye neden olmadığından değişen çevre şartlarına dayanamayan bireyler meydana gelir.

 

b) Eşeyli Üreme:

İki canlının beraberce yavru meydana getirdiği üremedir. Genetik çeşitlenmeye neden olduğundan, değişen çevre şartlarına dayanıklı bireyler meydana gelir.

9) TEPKİ VERME:

Tüm canlılar dış çevreden gelen fiziksel ve kimyasal uyarılara karşı cevap verirler. Bu cevap canlının hayata devam etmesini sağlar.

✔ Öglena ışığı algılayıp kamçısını kullanarak ışığa doğru hareket edebilir.

✔ Bitkiler ışığa doğru yönelebilir. 

✔ Köpekler ses duyduğunda kafasını sese doğru hareket ettirebilir.

 

10) ADAPTASYON:

Canlılar bulundukları ortamdaki yaşama şanslarını artırabilmek ve nesillerini devam ettirebilmek için kalıtsal özelliklere sahiptirler.

✔ Kaktüslerde su kaybını minimuma indirmek için yapraklar diken halini almıştır.

✔ Kutup ayılarının postu soğuktan korumak amacı ile diğer ayıların postlarına göre daha kalındır.

11) HOMEOSTASİ (İÇ DENGE):

Bir canlının anlık olarak değişen çevre şartlarına karşı vücudunda meydana gelmiş olan kısa süreli değişikliklerdir. Canlılar hayatta kalabilmek için yaşadıkları çevre ile vücutlarını denge halinde tutmak zorundadır.

 

✔ Hava ısındığında terleme yaparak vücut sıcaklığının yükselmesinin engellenmesi,

✔ Hava basıncının düşmesi durumunda iç basıncın dengelenmesi amacı ile kulakların tıkanması.

 

12) ORGANİZASYON:

Tek hücreli canlılarda en yüksek organizasyon birimi hücre iken;  çok hücrelilerde canlının gelişmişliğine göre en yüksek organizasyon birimi değişir.

 

Atom - Molekül - Organel - Hücre - Doku - Organ - Sistem - Organizma

Diğer Ortak Özellikler

 

✔ Ribozom, hücre zarı, sitoplazma, nükleik aside sahip olmak.

✔ Protein, karbonhidrat, yağ ve enzim sentezlemek.

✔ Mutasyona uğramak.

✔ Fosforilasyon, defosforilasyon, dehidrasyon ve hidroliz reaksiyonlarını gerçekleştirmek.

✔ Aktif ve pasif taşıma yapabilmek

✔ Basit organik maddeleri kompleks organik madde haline getirmek.

✔ Kompleks organik maddeleri basit organik madde haline getirmek.

✔ Organik maddeleri inorganik madde haline getirmek.

✔ Transkripsiyon (RNA sentezi).

✔ Replikasyon (DNA sentezi). Her hücrede değil ancak her canlıda ortaktır.

Canlıların Ortak Özellikleri

Melek Bıçakçı - Biyoloji Öğretmeni

CANLILARIN GENEL ÖZELLİKLERİ

Birçok kitapta ‘’Canlıların Ortak Özellikleri’’ başlığı ile göreceğiniz bir konuyu anlatmaya çalışacağım. Canlıların genel özellikleri olarak isimlendirmek daha doğru, çünkü o kadar fazla canlı çeşidi var ki istisnaların olması çok normal. Biraz detaylıca anlatacağım çünkü pek çok biyolojik kavram bu konu sayesinde oturabiliyor. Bu konuyu iyi öğrenen biri pek çok konuya ait soruyu rahatlıkla çözebiliyor ve yine pek çok konuyu rahatça öğrenebiliyor.

MEB KAZANIMLARI NE DİYOR?

Anadolu Liseleri ve Fen Liseleri ve Müfredatı:

Yaşam Bilimi Biyoloji

Biyoloji ve Canlıların Ortak Özellikleri

Anahtar Kavramlar: beslenme, boşaltım, büyüme, canlılık, gelişme, hareket, homeostazi, hücre, metabolizma, organizasyon, solunum, uyarılara tepki, uyum, üreme

Canlıların ortak özelliklerini irdeler.

a. Canlı kavramı üzerinden biyolojinin günümüzdeki anlamı ile nasıl kullanıldığı kısaca belirtilir.

seafoodplus.infoıların; hücresel yapı, beslenme, solunum, boşaltım, hareket, uyarılara tepki, metabolizma, homeostazi, uyum, organizasyon, üreme, büyüme ve gelişme özellikleri vurgulanır.

I. Hücresel Yapı:

Bildiğimiz üzere canlılar tek hücreli ya da çok hücreli olabilirler. Ancak her canlı mutlaka hücresel yapı gösterir ve her hücrede mutlaka bulunması gereken bazı yapılar vardır.

Canlıları hücresel yapılarına göre iki ana gruba ayırabiliriz:

1. Prokaryotlar

2. Ökaryotlar

DİKKAT!

Sakın ‘’Prokaryotlar tek hücreli, ökaryotlar çok hücrelidir’’ demeyiniz!

Prokaryot canlılar Bakteri ve Arkelerdir ve evet tek hücrelidirler. Ancak ökaryotlar tek hücreli ya da çok hücreli olabilirler. Örneğin amip, paramesyum (terliksi hayvan) gibi bazı protistler ile maya mantarları tek hücreli iken; şapkalı mantarlar, bitkiler ve hayvanlar çok hücrelilerdir ve bunların tümü ökaryot canlılardır.

Prokaryotik hücreler: Zarla çevrili organelleri ve çekirdekleri yoktur. DNA’ ları halkasaldır ve çekirdek gibi bir yapı içerisinde korunmaz, sitoplazmada çıplak halde bulunur. Bakteriler ve Arkeler prokaryot hücre yapılı canlılardır.

Ökaryotik hücreler: Zarla çevrili organelleri ve çekirdekleri vardır. Bakteri ve Arke dışındaki canlı grupları ökaryotik hücre yapısına sahiptir. Amip, öglena, paramesyum (terliksi hayvan), maya mantarları gibi tek hücreli; küf mantarı, şapkalı mantar, bitki, hayvan gibi canlı grupları ökaryot yapılıdırlar. Ökaryotik canlılar, prokaryotların gelişmesi ve evrimleşmesi sonucu oluşmuşlardır.

Prokaryot ve Ökaryot Hücrelerde Ortak Olarak Bulunan Başlıca Yapılar Şunlardır:

* Hücre zarı * Sitoplazma * Enzimler * DNA * RNA *Ribozom

DİKKAT!

Hücre çeperi yani duvarı bazı hücrelerde bulunurken hücre zarı tüm hücrelerde bulunur.

Şekil 1: Prokaryotik bir hücre olan bakterinin yapısı [1]
Şekil 2: Ökaryotik hücrelere örnek olarak bitki ve hayvan hücresi [1]

II. Yönetici Molekül (Nükleik Asit), Ribozom Bulundurma ve Protein/Enzim Sentezi:

DNA ve RNA, tüm canlılarda bulunan yönetici moleküllerdir. İlk olarak çekirdekte bulundukları düşünüldüğü için nükleik asitler (nukleus=çekirdek) olarak da isimlendirilebilirler.

Şekil 3: DNA-Gen-Nükleotid kavramları [1]

Bildiğiniz gibi DNA, hücredeki tüm yaşamsal faaliyetleri kontrol eden ve nesilden nesile kalıtsal özelliklerin aktarılmasını sağlayan moleküldür. Nükleotid adı verilen monomerlerden meydana gelir. Çift zincirlidir ve kendisini eşleyebilir. RNA ise bir anlamda DNA’nın yardımcısıdır. Tek zincirli olan ve kendisini eşleyemeyen bu molekül, protein sentezini yönetir ve gerçekleştirir. DNA’yı büyük patron olarak düşünürsek RNA’nın da ribozom şubesinin müdürü olduğunu söyleyebiliriz 😊. DNA, herşeyi yönettiği gibi protein sentezini de yönetir. Aralarında şu şekilde bir ilişki vardır:

Şekil 4: DNA’dan Proteine

DNA, RNA’ya sentezlenecek olan proteinin şifresini verir, RNA da ribozoma giderek bu proteinin sentezlenmesini sağlar. Sentezlenen protein yapısal ya da işlevsel olabilir. Tüm canlıların temel yapı maddesi proteinlerdir ve canlılarda sindirim, solunum gibi yaşamsal faaliyetlerin gerçekleşmesi için enzimlere ihtiyaç vardır. İşte bu sebeple tüm canlılar protein sentezlemek zorundadır. O halde DNA, RNA, ribozom ve enzim bulundurma; canlıların genel özellikleridir.

DNA prokaryotlarda sitoplazmada, ökaryotlarda ise çekirdektedir (ökaryotlarda bazı organellerin kendine özgü DNA ve RNA’sı vardır ancak bu konu daha sonra anlatılacaktır).

Biraz da ribozomdan söz edelim: Akademik kaynaklarda organel olarak kabul edilmeyen, zarsız bir yapıdır. Büyük ve küçük alt birim denilen iki kısımdan oluşur. Bu iki alt birim normalde sitoplazmada ayrı ayrı dolaşırlar, protein sentezinin başlaması ile birlikte bir araya gelirler. Prokaryot hücrelerin ribozomları 50 S ve 30 S’lik alt birimlerden oluşurken, ökaryotlarda 60 S ve 40 S’lik alt birimler bulunur.

Şekil 5: Ribozom [2]

III. Beslenme:

Tüm canlılar beslenir mi? Evet.

Tüm canlılar besinini dışarıdan mı alır? Hayır.

Bu iki kavram genellikle karıştırılır. Örneğin bitkiler besinlerini kendileri üretirler, doğrudur ama illaki besine ihtiyaç duyarlar. Canlılar, yaşam enerjilerini sağlayabilmek için önce beslenmek sonra da solunum ya da fermantasyon yapmak zorundadırlar. Beslenme ile ihtiyaç duydukları organik molekülleri alırlar, solunum ya da fermantasyon ile de bunları kullanarak ATP sentezlerler.

Beslenme Şekline Göre Canlılar:

1. Ototroflar (Üreticiler)

2. Heterotroflar (Tüketicier)

3. Hem ototrof hem de heterotroflar (Hem üretici hem tüketiciler)

DİKKAT!

Sakın ola ki ototrofa otçul, heterotrofa da etçil demeyiniz! Ototrof kendi besinini kendisi üretebilendir, bir anlamda otçul değil otun ta kendisidir😊 Tabii ki ototrof tek canlı grubu bitkiler değildir.

Ototroflar:

Kendi besinini üretebilen canlılardır. Bu esnada ışık enerjisi kullanılıyorsa fotosentez, kimyasal enerji kullanılıyorsa kemosentez yaptıklarını söyleyebiliriz. Aslında madde dönüşümleri iki olay için de benzerdir, kullanılan enerjiler farklıdır.

Şekil 6: Fotosentez Tepkimesi

Fotosentez yapan canlılara örnek olarak bitkiler, algler (su yosunları), öglena verilebilir.

Kemosentez olayı ise sadece bazı prokaryotlarda görülebilir.

Heterotroflar:

Kendi besinini üretemeyen, dışarıdan hazır besin alan canlılardır. Bir grubu holozoik canlılardır ki bunlar etçil (karnivor), otçul (herbivor) ve hepçil (omnivor) olarak sınıflandırılırlar. Ayrıca saprofit (çürükçül, ayrıştırıcı) canlılar da heterotrofturlar. Parazitler gibi bazı ortak yaşam üyeleri de tüketici canlılar arasındadır.

Fungi (Gerçek Mantarlar) üyelerinin tümü heterotroftur.

Bakterilerin ve Arkelerin bazıları ototrof, bazıları ise heterotroftur.

Hem Ototrof Hem De Heterotrof Canlılar:

Bu canlılar hem fotosentez ile besin üretirler hem de dışarıdan hazır besin alırlar. En bilinen iki örneği böcekçil bitkiler ve Öglena’dır.

Böcekçil (karnivor) bitkiler fotosentez ile glikoz ihtiyaçlarını karşılarlar ancak yaşadıkları topraklar azot bakımından çok fakirdir. Protein, DNA, RNA, enzim gibi pek çok hayati molekülün sentezi için azot şarttır. Bu sebeple azot ihtiyaçlarını, yakaladıkları böceklerden karşılarlar.

Öglena, kloroplast taşıyan tek hücreli bir Protista üyesidir. Kloroplastı olduğu için fotosentez yapabilir ancak

ortamdan hazır besin de alabilir.

Şekil 7: Böcekçil bitki ve Öglena

Prokaryotik canlılar bu gruplandırmaya bazı terimlerin eklenmesine sebep olmuştur. Mesela bazı prokaryotikler ışık enerjisi kullanarak ATP sentezleyebilirlr ancak bu ATP’yi kullanarak besin sentezleyemezler. Bu canlılar, fotoheterotroflar olarak adlandırılırlar.

Şekil 8: Beslenme şekline göre canlıların gruplandırılması [1]

Beslenme şekline göre canlılar ile ilgili daha detaylı bilgi, ekoloji konusu dahilinde anlatılacaktır.

IV. Atp Üretme ve Tüketme:

ATP (Adenozintrifosfat), canlılarda üretilen ve tüketilen enerji molekülüdür. Yaşamsal faaliyetler için gereken enerji ATP molekülünden karşılanır.

Şekil 9: ATP’nin dönüşümü ve enerji ile ilişkisi [3]

Canlıların hepsi ATP üretir ve tüketirler. ATP üretimi solunum ya da fermantasyon ile gerçekleştirilir. Solunum oksijenli ya da oksijensiz olabilir.

Şekil Solunum ve Fermantasyon Olayları [4]

V. Hidroliz ve Dehidrasyon:

Hidroliz, su ile parçalama anlamındadır. Büyük moleküllerin su ile parçalanarak daha küçük moleküllere dönüşmesidir. Örneğin, ATP’nin ADP + P’ye dönüşümü bir hidroliz olayıdır. Proteinin su ile parçalanarak amino asitlere dönüşmesi de hidrolizdir. Hidroliz olayında enerji harcanmaz.

Dehidrasyonda ise hidrolizin tersine, küçük moleküller birbirine bağlanarak büyük bir moleküle dönüşür, bu esnada da su açığa çıkar. Örneğin ADP+P’den ATP sentezi dehidrasyondur. Ya da yağ asitleri ve gliserolün birleşerek nötral yağ oluşturması bir çeşit dehidrasyondur. Dehidrasyon tepkimeleri için enerji harcanır.

Şekil Dehidrasyon ve Hidroliz Tepkimeler

DİKKAT!

Kimyasal sindirim bir çeşit hidrolizdir ancak her hidroliz bir sindirim değildir. İç parazitler (tenya vs) sindirim enzimlerine sahip değillerdir. Buradan da anlaşılacağı gibi, sindirim canlılar için ortak bir özellik değildir.,

Şekil Hidroliz ve Dehidrasyon olayları [3]

VI. İrkilme:

Her canlı çevresindeki uyaranlara bir şekilde tepki verir. Bu tepki hareket şeklinde olabilir. İrkilme, etkiye tepki olayıdır ve canlıların genel özelliklerinden biridir. Örneğin, bitkilerin yaprak ve gövdeleri ışığın olduğu tarafa doğru büyüyerek yönelme meydana getirirler, tek hücreliler besinin bol olduğu tarafa doğru hareket ederler, ortam sıcaklığının düşmesi durumunda insanlarda titreme meydana gelir, böcekçil bitkiler böceğin yakalanması ile kapanarak sindirim enzimleri gönderirler.

VII. Homeostasi:

Kararlı iç denge demektir. Her canlı iç ortamında belli bir denge sağlamak zorundadır. Tek hücreli bir canlının sitoplazmadaki su miktarını belli değerler arasında tutması, insanda vücut sıcaklığının dengelenmesi, kanımızdaki mineral miktarlarının belirli değerlerde tutulması hep homeostatik dengeyi korumaya yöneliktir.

Şekil İrkilme ve Homeostasi [3]

VIII. ADAPTASYON:

Her canlı yaşadığı ortama uyum sağlamak zorundadır. Canlıların bulundukları ortamda yaşama ve üreme şansını arttıran kalıtsal değişimlere adaptasyon denir. Adaptasyonlar uzun sürede oluşan ve kalıtsal olan değişimlerdir. Örnek: Kutup ayılarının beyaz olması, bukalemunun renk değiştirmesi

IX. Boşaltım:

Canlı vücuduna ihtiyaçtan fazla alınmış olan maddeler ile metabolizma sonucu oluşan atık maddelerin vücuttan uzaklaştırılması, boşaltım ile sağlanır. Terleme, soluk verme, dışkılama, idrar oluşumu ve atılması boşaltım olaylarıdır. Ancak boşaltım sistemi denilince sadece idrar oluşumu dikkate alınmalıdır.

Tek hücrelilerde difüzyon, osmoz, aktif taşıma, ekzositoz gibi olaylar ile sağlanan boşaltım; bitkilerde yaprak dökümü, terleme, damlama gibi olaylar sayesinde gerçekleştirilir.

X. Büyüme ve Gelişme

Büyüme, bir canlıda görülen kütle ya da hacim artışıdır. Tek hücrelilerde sitoplazma miktarının artması ve çekirdeğin büyümesi şeklinde olabilirken çok hücrelilerde mitoz bölünme ile sağlanır.

Gelişme ise bir canlının yapabildiklerinin artmasıdır.

Mesela bir bebeğin boyunun uzaması büyüme iken, bebeğin yürümeyi öğrenmesi ise gelişmedir.

Bir bitkinin yaprak sayısının artması büyüme iken, buna bağlı olarak bitkinin daha fazla fotosentez yapabilmesi gelişmedir.

XI. Üreme:

Her canlı neslini devam ettirebilmek amacıyla çoğalma eğilimindedir. Üreme yani çoğalma bireysel yaşamın devamı için şart değildir ancak neslin devamı için şarttır.

Canlılarda üreme iki şekilde gerçekleşir:

1. Eşeyli üreme

2. Eşeysiz üreme

Eşeyli üremede dişi ve erkek bireyler vardır. Genellikle mayoz ile oluşan gametler (üreme hücreleri) oluşur ve bu gametler döllenirler. Bu nedenle eşeyli üreme sonucu oluşan canlılarda kalıtsal çeşitlilik görülür.

Eşeysiz üremede ise dişi ve erkek kavramları yoktur, tek atadan yeni bireyler meydana gelir. Mayoz bölünme ve döllenme gerçekleşmez, oluşan bireyler ata bireyin kopyasıdır; kalıtsal çeşitlilik yoktur.

Şekil İnsanda üreme [5]

DİKKAT!

Bitkilerde tohum oluşumu için mayoz ve döllenme gerçekleşir. Bu sebeple bitkilerde tohum ile üreme eşeylidir. Vejetatif üreme, doku kültürü gibi yöntemler ise, bitkilerde eşeysiz üremeyi sağlamak için kullanılabilir.

XII. Organizasyon:

İster tek hücreli ister çok hücreli olsun, tüm canlılar iç yapılarında belli bir organizasyona yani düzene sahiptirler.

Şekil Atomdan Organizmaya

Ayrıca doğadaki canlılar arasında da bir düzen vardır.

Şekil Doğadaki Organizasyon 1

Şekil Doğadaki organizasyon 2 [3]

XIII. Metabolizma

Canlılarda gerçekleşen yaşamsal faaliyetlerin tamamına metabolizma adı verilir.

Şekil Metabolizma olayları [6]

Metabolizma, anabolizma ve katabolizma olarak iki grupta incelenir:

Anabolizma genel anlamda yapım tepkimeleridir. Sentez adı da verilebilir. Fotosentez, kemosentez ve dehidrasyon tepkimeleri anabolik reaksiyonlardır.

Katabolizma ise yıkımdır. Solunum, fermantasyon ve hidroliz ise katabolik reaksiyonlardır.

Metabolizma ile ilgili karşılaşabileceğimiz bir başka kavram da bazal metabolizmadır. Bazal metabolizma, Hayatın devamı için şart olan asgari metabolizma faaliyetidir. Tam dinlenme halinde ve uygun koşullarda ölçüm yapılarak saptanabilir. Örneğin kış uykusundaki ayılar bazal metabolizma ile yaşamlarını sürdürürler.

Referanslar

1. PALME YAYINEVİ YAŞAM BİYOLOJİ BİLİMİ. Yayınevi: Palme Yayınevi. Sayfa Sayısı: ; Basım: 9; ISBN No:

2. Coşkunk, A. (). Hücrelerin Protein Fabrikaları Ribozomlar. Bilim ve Teknik, Aralık ,

3. Biyoloji: Öz. Nobel Akademik Yayıncılık · Eric J. Simon. Cilt Durumu Ciltsiz. Sayfa Sayısı ISBN

4. TYT AYT Biyoloji Çek Kopart Akıllı Konu Anlatım Föyü ADF Soru Kalesi Yayınları

nest...

batman iftar saati 2021 viranşehir kaç kilometre seferberlik ne demek namaz nasıl kılınır ve hangi dualar okunur özel jimer anlamlı bayram mesajı maxoak 50.000 mah powerbank cin tırnağı nedir

© 2024 Toko Cleax. Seluruh hak cipta.