johnson iş ilanları / Архив рассылок [pgsql-interfaces] : Компания Postgres Professional

Johnson Iş Ilanları

johnson iş ilanları

Moulin Rouge Wedding

Свадьба в стиле Мулен Руж 



Мулен Руж, в буквальном переводе «Красная мельница». И кто не знает это знаменитое классическое кабаре в Париже. 
Лично я там не разу не была, но представление о нём имеется. Конечно по замечательному и одноименному фильму-мюзикл с Николь Кидман и Юэн Макгрегор. И конечно же в памяти осела песня моей молодости "Lady Marmalade" в исполнении Кристины Агилера, Lil' Kim, Mya и Пинк. Так вот к чему я!!!

Свадебный фотограф и Wedding Planner. Вот кто самые главные создатели свадьбы-мечты. И когда они друг
с другом на одной волне, да ещё и когда у них профессиональная команда (в которой я имею честь состоять) то именно тогда получается невероятное! Я думаю фото говорят сами за себя!






Этот свадебный стол отлично отражает чувства: впечатляющий вид (причём с большой буквы!!!), бархатные ткани, изящные сладости.

ВЫ почти услышали (и не просто увидели) яркие звуки ослепительных деталей. 

Смотря на это торжество золота, благородных красных и черных тонов, в Ваш фокус попадает торт. О да! Это король деталей! Здесь и рюши, и корсет, и тончайшее кружево. Даже перья с цилиндром и те съедобны. Браво мастеру Ольге Фухс. 

Подходящие по стилю печенье (как Вы догадались) моё. 




Сексуальное, игривое свадебные шоу в стиле Мулен Руж. А ведь это уже почти ИСКУССТВО!!!  Короткое свадебное платье со своей задорной тюлевой юбкой и черным поясом просто идеально подходит для этой гламурной свадьбы. Черные свадебные туфли, впечатляющие аксессуары для волос и выразительный макияж. Экстравагантно, совсем не скучно, и очень элегантно. Кроваво-красный свадебный букет из роз и эвкалипта с большими черными перьями. 




А он? Жених и Джентльмен! Классический и элегантный фрак черного цвета от Wilvorst и цилиндр притягивают взоры. 

Это поистине роскошный вечер!
 Magnifique!




P.S.  Всех с днём влюблённых!


XOXO



Julia B.

Gene transfer: A prelude to gene therapy

References

  1. Graham FL, van der Eb AJ (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virol 52: 456–461.

    PubMed Google Scholar

  2. Baltimore D (1970). Viral RNA dependent DNA polymerase. Nature 226: 1209–1211.

    PubMed Google Scholar

  3. Temin HM, Mizutani S (1970). Viral RNA-dependent DNA polymerase. Nature 226: 211–213.

    Google Scholar

  4. Nathans D, Smith HO (1975). Restriction endonucleases in the analysis and restructuring of DNA molecules. Ann Rev Biochem 44: 273–293.

    PubMed Google Scholar

  5. Crystal RG (1995). Transfer of genes to humans: Early lessons and obstacles to success. Science 270: 404–410.

    PubMed Google Scholar

  6. Gordon JW, Ruddle FH (1985). DNA mediated genetic transformation of mouse embryos and bone marrow – a review. Gene 33: 121–136.

    PubMed Google Scholar

  7. Anderson WF (1984). Prospects for human gene therapy. Science 226: 401–409. 00

    PubMed Google Scholar

  8. Anderson WF (1992). Human gene therapy. Science 256: 808–813.

    PubMed Google Scholar

  9. Loyter A, Scangos GA, Ruddle FH (1982). Mechanisms of DNA uptake by mammalian cells: Fate of exogenously added DNA monitored by the use of fluorescent dyes. Proc Natl Acad Sci USA 79: 422–426.

    PubMed Google Scholar

  10. McCutchan JH, Pagano JS (1968). Enhancement of the infectivity of Simian Virus 40 deoxyribonucleic acid with diethylamino-ethyl-dextran. J Natl Canc Inst 41: 351–356.

    Google Scholar

  11. Potter H (1988). Electroporation in biology: Methods, application and instrumentation. Anal Biochem 174: 163–173.

    Google Scholar

  12. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982). Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J 1: 841–845.

    PubMed Google Scholar

  13. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenze M, Northrop JP, Ringold GM, Danielsen M (1987). Lipofection: A highly efficient, lipid mediated DNA transfection procedure. Proc Natl Acad Sci 84: 7413–7417.

    PubMed Google Scholar

  14. Straubinger RM, Papahadjopoulos D (1983). Liposomes as carriers for intracellular delivery of nucleic acids. Methods Enzymol 101: 512–527.

    PubMed Google Scholar

  15. Mannino RJ, Fould-Fogerite S (1988). Liposomemediated gene transfer. BioTechniques 6: 682–690.

    PubMed Google Scholar

  16. Gluzman Y (1982). Eucaryotic viral vectors. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar

  17. Ishiura M, Hirose S, Uchida J, Hamada Y, Suzuki Y, Okada Y (1982). Phage particle mediated gene transfer to cultured mammalian cells. Mol Cell Biol 2: 607–616.

    PubMed Google Scholar

  18. Ishiura M, Uchida T, Okada Y (1989). Stability of the transformants obtained by phage particlemediated gene transfer. Cell Struct Funct 14: 495–499.

    PubMed Google Scholar

  19. Diacumakos EG (1973). Methods for micromanipulation of human somatic cells in culture. Methods in Cell Biology 7: 287–311.

    PubMed Google Scholar

  20. Graessman A, Graessman M (1971). Uber die bildung van melanin in muskelzellen nach der direkten ubertragung von RNA aus Harding-Passey Melanomzellen. Hoppe-Seylers Z Physiol Chem 352: 527–532.

    PubMed Google Scholar

  21. Yang NS, Burkholder J, Roberts B, et al. (1990). In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 87: 9568–9572.

    PubMed Google Scholar

  22. Kriegler M (1990). Gene Transfer and Expression: A Laboratory Manual. New York: Wm. Freeman and Co.

    Google Scholar

  23. Janssen K (ed) (1994). Current Protocols in Molecular Biology. New York: John Wiley and Sons.

    Google Scholar

  24. Murray EJ (1991). Gene Transfer and Expression Protocols. Methods in Mol Biol, Vol. 7. Clifton, NJ: Human Press.

    Google Scholar

  25. Stowe ND, Wilkie NM (1976). An improved technique for obtaining enhanced infectivity with Herpes Simplex type 1 DNA. J Gen Virol 33: 447–458.

    PubMed Google Scholar

  26. Frost E, Williams J (1978). Mapping-temperature sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91: 39–50.

    PubMed Google Scholar

  27. Shen YM, Hirschhorn RR, Mercer WE, Surmacz E, Tsutsui Y, Soprano KJ, Baserga R (1982). Gene transfer: DNA microinjection compared with DNA transfection with a very high efficiency. Mol Cell Biol 2: 1145–1154.

    PubMed Google Scholar

  28. Innes CL, Smith B, Langenback R, Tindall KR, Boone LR (1990). Cationic liposomes (Lipofectin) mediate retroviral infection in the absence of specific receptors. J Virol 64: 957–961. 0

    PubMed Google Scholar

  29. Nicolau C, Legrard A, Grosse GE (1987). Liposomes as carriers for in vivo gene transfer and expression. Meth Enz 149: 157–176.

    Google Scholar

  30. Felper PL, Ringold GM (1989). Cationic liposome mediated transfection. Nature 337: 387–388.

    PubMed Google Scholar

  31. Leibiger B, Leibiger I, Sarrach D, Zuhlke H (1991). Expression of exogenous DNA in rat liver cells after liposome-mediated transfection in vivo. Biochem Biophy Res Commun 174: 1223–1231.

    Google Scholar

  32. Curiel DT, Wagner E, Cotten M, Birnstiel ML, Agarwal S, Li C-M, Loechel S, Hu P-C (1992). High-efficiency in vitro gene transfer mediated by adenovirus coupled to DNA-polylysine complexes via an antibody bridge. Hum Gene Ther 3: 147–154.

    PubMed Google Scholar

  33. Zhu N, Liggitt D, Liu Y, Debs R (1993). Systemic gene expression after intravenous DNA delivery into adult mice. Science 261: 209–211.

    Google Scholar

  34. Toneguzzo F, Keating A (1986). Stable expression of selectable genes introduced into human hematopoietic stem cells by electric-field mediated DNA transfer. Proc Natl Acad Sci USA 83: 3496–3499.

    PubMed Google Scholar

  35. Pahl HL, Burn TC, Denen DG (1991). Optiminization of transient transfection into human myeloid cell lines using a luciferase reporter gene. Exp Hematol 19: 1038–1041.

    PubMed Google Scholar

  36. Takahashi M, Furukawa T, Nikkuni Y, Aoki A, Nomoto N, Koike T, Moriyama Y, Shinada S, Shibata A (1991). Efficient introduction of a gene into hematopoietic cells in S-phase by electroporation. Exp Hematol 19: 343–346.

    PubMed Google Scholar

  37. Matthews KE, Keating A (1994). Gene transfer into IL3 primed human early hematopoietic progenitors using electroporation: Increased cycling improves efficiency. Exp Hematol 22: 702.

    Google Scholar

  38. Mulligan RC, Berg P (1980). Expression of a bacterial gene in mammalian cells. Science 209: 1422–1427.

    PubMed Google Scholar

  39. Fouillard L, Matthews KE, Branch D (1993). Expression of factor IX cDNA introduced into human marrow stromal cells by electroporation. Exp Hematol 21: 1159.

    Google Scholar

  40. Keating A, Horsfall W, Hawley, R, Toneguzzo F (1990). Effect of different promoters on the expression of genes introduced into hematopoietic and marrow stomal cells by electroporation. Exp Hematol 18: 99–102.

    PubMed Google Scholar

  41. Schaffner W (1980). Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci USA 77: 2163–2167.

    PubMed Google Scholar

  42. Litzkas P, Jha KK, Ozer HL (1984). Efficient transfer of cloned DNA into human diploid cells: Protoplast fusion in suspension. Mol Cell Biol 4: 2549–2552.

    PubMed Google Scholar

  43. Burke DT, Carle GF, Olson MV (1987). Cloning of large exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812.

    PubMed Google Scholar

  44. Capecchi MR (1980). High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.

    PubMed Google Scholar

  45. Boyd AL (1985). Expression of cloned genes microinjected into cultured mouse and human cells. Gene Anal Techn 2: 1–9.

    Google Scholar

  46. Jaenisch R (1989). Transgenic Animals. Science 240: 1468–1474.

    Google Scholar

  47. Boyd AL, Samid D (1993). Review: Molecular Biology of Transgenic Animals. J Anim Sci 71 (Suppl 3): 1–9.

    Google Scholar

  48. Woychik RP, Stewart TA, Davis LG, D'Eustachio P, Leder P (1985). An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature (London) 318: 36–40.

    PubMed Google Scholar

  49. Pinkert CA, Widera G, Cowing C, Heber-Katz E, Palmiter RD, Flavell RA, Brinster RL (1985). Tissue specific, inducible and functional expression of the Ed MHC class II gene in transgenic mice. EMBO J 4: 2225–2230.

    PubMed Google Scholar

  50. Rovnak J, Casey JW, Boyd AL, Gonda MA, Cockerell GL (1991). Isolation of bovine leukemia virus infected endothelial cells from cattle with persistent lymphocytosis. Lab Invest 65: 192–202.

    PubMed Google Scholar

  51. Rovnak J, Boyd AL, Casey JW, Gonda MA, Jensen WA, Cockerell GL (1993). Pathogenicity of molecularly cloned bovine leukemia virus. J Virol 67: 7096–7105.

    PubMed Google Scholar

  52. Braun MJ, Lahn S, Boyd AL, Kost TA, Nagashima K, Gonda MA (1988). Molecular cloning of biologically active proviruses of bovine immunodeficiencylike virus. Virology 167: 515–523.

    PubMed Google Scholar

  53. Boyd AL, Wood TG, Buckley A, Fischinger PJ, Gilden RV, Gonda MA (1988). Microinjection and expression of an infectious proviral clone and subgenomic envelope construct of a human immunodeficiency virus. AIDS Research and Human Retroviruses 4: 31–41.

    PubMed Google Scholar

  54. Capecchi MR (1989). Altering the genome by homologous recombination. Science 244: 1288–1292.

    Google Scholar

  55. Thomas KR, Folger KR, Capecchi, MR (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell 44: 419–428.

    PubMed Google Scholar

  56. Bernstein A, Breitman M (1989). Genetic ablation in transgenic mice. Mol Biol Med 6: 523–530.

    PubMed Google Scholar

  57. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987). HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326: 292–295.

    PubMed Google Scholar

  58. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987). A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326: 295–298.

    PubMed Google Scholar

  59. Cheng L, Ziegelhoffer PR, Yang NS (1993). In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 90: 4455–4459.

    PubMed Google Scholar

  60. Davis HL, Whalen RG, Demeneix BA (1993). Direct gene transfer into skeletal muscle in vivo: Factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 4: 151–159.

    PubMed Google Scholar

  61. Matthews KE, Mills GB, Horsfall W, Hack N, Skorecki K, Keating A (1993). Bead transfection: Rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells. Exp Hematol 21: 697–702.

    PubMed Google Scholar

  62. Correll PH, Colilla S, Karlsson S (1994). Retroviral vector design for long-term expression in murine hematopoietic cells in vivo. Blood 84: 1812–1822.

    PubMed Google Scholar

  63. Karlsson S (1992). Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood 78: 2484–2492.

    Google Scholar

  64. Donahue RE, Dessler D, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R, Bacher J, Zsebo KM, Nienhuis AW (1992). Helper-virus induced T-cell lymphoma in non-human primates after retroviral mediated gene transfer. J Exp Med 176: 1125–1135.

    PubMed Google Scholar

  65. Chen C, Okayama H (1987). High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 27–45.

    Google Scholar

  66. Holter W, Fordis CM, Howard BH (1989). Efficient gene transfer by sequential treatment of mammalian cells with DEAE-dextran and deoxyribonucleic acid. Exp Cell Res 184: 546–551.

    PubMed Google Scholar

  67. Boyd AL, Stoerker J, Holliday J, Glaser R (1987). Identification of EBV-specific antigens following microinjection of subgenomic DNA fragments. In: Levine PH, Ablashi DV, Pearson GR, Kottaridis SD (eds), Epstein-Barr Virus and Associated Diseases, pp 466–476. Dordrecht/Boston/London: Martinus Nijhoff.

    Google Scholar

  68. Reeves R, Gorman C, Howard B (1985). Minichromosome assembly of nonintegrated plasmid DNA transfected into mammalian cells. Nucl Acids Res 13: 3599–3604.

    PubMed Google Scholar

  69. Hirschhorn, RR, Sarver N (in press). Mammalian expression vectors. In: Decker M (ed), Foundations of Recombinant DNA Methodology.

  70. Ruddle FH (1982). A new era in mammalian gene mapping: Somatic cell genetics and recombinant DNA methodologies. Nature 294: 115–119.

    Google Scholar

  71. Darnell JE (1982). Variety in the level of gene control in eukaryotic cells. Nature 297: 365–371.

    PubMed Google Scholar

  72. Pabo CO, Sauer RT (1992). Transcription factors: Structural families and principles of DNA recognition. Ann Rev Biochem 61: 1053–1095.

    PubMed Google Scholar

  73. Johnson PF, McKnight SL (1989). Eukaryotic transcriptional regulatory proteins. Ann Rev Biochem 58: 799–839.

    PubMed Google Scholar

  74. Ptashne M (1988). How eukaryotic transcriptional activators work. Nature 335: 683–689.

    ArticlePubMed Google Scholar

  75. Okayama H, Berg P (1982). High-efficiency cloning of full-length cDNA. Mol Cell Biol 2: 161–170.

    PubMed Google Scholar

  76. Southern PJ, Berg P (1982). Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1: 327–241.

    PubMed Google Scholar

  77. Wigler M, Silverstein S, Lee LS, Pellicer A, Cheng YC, Axel R (1977). Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11: 223–232.

    PubMed Google Scholar

  78. Maitland NJ, McDougall JK (1977). Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell 11: 233–241.

    PubMed Google Scholar

  79. Mulligan RC, Berg P (1981). Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci USA 78: 2072–2076.

    PubMed Google Scholar

  80. O'Hare K, Benoist C, Breathnach R (1981). Transformation of mouse fibroblasts to methotrexate resistance. Proc Natl Acad Sci USA 78: 1527–1531.

    PubMed Google Scholar

  81. Kaufman RJ, Sharp PA (1982). Amplification and expression of sequences co-transfected with a modular dihydrofolate reductase complementary DNA gene. J Mol Biol 159: 601–622.

    PubMed Google Scholar

  82. Gritz L, Davies J (1983). Plasmid encoded hygromycin B resistance: The sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188.

    ArticlePubMed Google Scholar

  83. Gossen M and Bujard H (1992). Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proc Natl Acad Sci USA 89: 5547–5551.

    PubMed Google Scholar

  84. Gossen M, Bonin AL, and Bujard H (1993). Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biol Sci 18: 471–475.

    Google Scholar

  85. Subramani S, DeLuca M (1988). Applications of the firefly luciferase as a reporter gene. Genetic Engineering 10: 75–89.

    Google Scholar

  86. Nordeen K (1988). Luciferase reporter gene vectors for analysis of promoters and enhancers. BioTechniques 6: 454–456.

    PubMed Google Scholar

  87. Gorman CM, Moffat LF, Howard BH (1982). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051.

    PubMed Google Scholar

  88. Lopata MA, Cleveland DW, Sollner-Webb B (1984). High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethylsulfoxide or glycerol shock treatment. Nucl Acids Res 12: 5707–5717.

    PubMed Google Scholar

  89. Chalfie M, Tu Y, Euskirchem G, Ward WW, Prasher DC (1994). Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

    PubMed Google Scholar

  90. Kain SR, Adams M, Kondepudi A, Yang TT, Ward WW, Kitts P (1995). Green fluorescent protein as a reporter of gene expression and protein localization. BioTechniques 217: 650–655.

    Google Scholar

  91. Berg P (1981). Dissections and reconstructions of genes and chromosomes. Science 213: 293–303.

    Google Scholar

  92. MacGregor CR, Caskey CT (1989). Construction of plasmids that express E. coli B-galaetosidase in mammalian cells. Nucl Acids Res 17: 2365.

    PubMed Google Scholar

  93. Khoury G, Gruss P (1983). Enhancer elements. Cell 33: 313–314.

    ArticlePubMed Google Scholar

  94. Beato M (1989). Gene regulation by steroid hormones. Cell 56: 335–344.

    ArticlePubMed Google Scholar

  95. Howe JR, Skryabin BV, Belcher SSM, Zerillo CA, Schmauss C (1995). The responsiveness of a tetra-cycline-sensitive expression system differs in different cell lines. J Biol Chem 270: 14168–14174. 0

    PubMed Google Scholar

  96. Furth PA, St. Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, and Henninghausen L (1994). Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91: 9302–9306.

    PubMed Google Scholar

  97. Schultze N, Burki Y, Lang Y, Certa U, Bluethmann H (1996). Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotechnology 14: 499–503.

    PubMed Google Scholar

  98. Laimins L, Khoury G, Gorman C, Howard B, Gruss P (1982). Host specific activation of transcription by tandem repeats from Simian Virus 40 and Moloney murine sarcoma virus. Proc Natl Acad Sci USA 79: 6453–6457.

    PubMed Google Scholar

  99. Benoist C, Chambon P (1981). In vivo sequence requirements of the SV40 early promoter region. Nature (London) 290: 304–310.

    PubMed Google Scholar

  100. Serfling E, Jasin M, Schaffner W (1985). Enhancers and eukaryotic gene transcription. Trends in Genetics 1: 224–230.

    Google Scholar

  101. Sugden B, Marsh K, Yates J (1985). A vector that replicates as a plasmid and can be efficiently selected in B-lymphocytes transformed by Epstein-Barr virus. Mol Cell Biol 5: 410–413.

    PubMed Google Scholar

  102. Subramani R, Southern P (1983). Review: Analysis of gene expression using Simian Virus 40. Anal Biochem 135: 1–15.

    PubMed Google Scholar

  103. Shatkin AJ (1976). Capping of eukaryotic mRNAs. Cell 9: 645–653.

    PubMed Google Scholar

  104. Sharp PA (1985). On the origin of RNA splicing and introns. Cell 42: 397–400.

    ArticlePubMed Google Scholar

  105. Ross J (1995). mRNA Stability in Mammalian Cells. Micro Rev 59: 423–450.

    Google Scholar

  106. Kozak M (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292.

    ArticlePubMed Google Scholar

  107. Kozak M (1991). An analysis of vertebrate mRNA sequences: initiations of translational control. J Cell Biol 115: 887–903.

    ArticlePubMed Google Scholar

  108. Varshavsky, A (1992). The N-end Rule. Cell 69: 725–735.

    ArticlePubMed Google Scholar

  109. Cheng L, Fu J, Tsukamoto A, Hawley RG (1996). Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nature Biotech 14: 606–614.

    Article Google Scholar

  110. Levy JP, Muldoon RR, Zolotukhin S, Link CJ (1996). Retroviral transfer and expression of humanized, red-shifted green fluorescent protein gene into human tumor cells. Nature Biotech 14: 610–614.

    Google Scholar

  111. Heim R, Cubitt AB, Tsien RY (1995). Improved green fluorescence. Nature 373: 663–664.

    Article Google Scholar

  112. Rizzuto R, Brinin M, Pizo P, Murgia M, Pozzan T (1995). Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Current Biol 5: 635–642.

    Google Scholar

  113. Kaether C, Gerdes H (1995). Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett 369: 267–271.

    PubMed Google Scholar

  114. Oyawa H, Inouye S, Tsuji FI, Yasada K, Umesono K (1995). Localization, trafficking, and temperaturedependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc Natl Acad Sci USA 92: 11899–11903.

    PubMed Google Scholar

  115. Marshall J, Molloy R, Moss GW, Howe JR, Hughes TE (1995). The jellyfish green fluorescent protein: A new tool for studying ion channel expression and function. Neuron 14: 211–215.

    PubMed Google Scholar

  116. Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M (1995). Green fluorescent protein as a marker in transgenic mice. Develop Growth Differ 37: 455–459.

    Google Scholar

  117. White, JA (1993). Cooperativity of SV40 Large T Antigen and RAS In Progressive Stages of Transformation of Human Fibroblasts [thesis]. Frederick, MD: Hood College.

    Google Scholar

  118. White JA, Carter SG, Ozer HL, Boyd AL (1992). Cooperativity of SV40 T antigen and ras in progressive stages of transformation of human fibroblasts. Exp Cell Res 203: 157–163.

    PubMed Google Scholar

  119. Jat PS, Sharp PA (1989). Cell lines established by a temperature-sensitive Simian Virus 40 large-Tantigen gene are growth restricted at the nonpermissive temperature. Mol Cell Biol 9: 1672–1681.

    PubMed Google Scholar

  120. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman F, Bonham MA, Au KG, Carter SG, Bruckenstein DA, Boyd AL, Noble SA, Babiss LE (1992). Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485.

    PubMed Google Scholar

  121. Bonham MA, Brown S, Boyd AL, Brown PH, Bruckenstein DA, Hanvey JC, Thomson SA, Pipe A, Hassman F, Bisi JE, Froehler BC, Matteucci MD, Wagner RW, Noble SA, Babiss LE (1995). An assessment of the antisense properties of RNase Hcompetent and steric-blocking oligomers. Nucl Acids Res 23: 1197–1203.

    PubMed Google Scholar

  122. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg S, Klein H, Berger M, Mullen CA, Ramsey WJ, Munl L, Morgan RA, Anderson WF (1995). T lymphocytedirected genes therapy for ADA-SCID: Initial trial results after 4 years. Science 270: 475–480.

    PubMed Google Scholar

  123. Brenner MK (1996). Gene transfer to hematopoietic cells. New Engl J Med. 335: 337–339.

    PubMed Google Scholar

  124. Culver KW, Anderson FW, Blaese RM (1991). Lymphocyte gene therapy. Hum Gene Ther 2: 107–109.

    PubMed Google Scholar

  125. Sorrentino BP, McDonagh KT, Woods D, Orlic D (1995). Expression of retroviral vectors containing the human multidrug resistance cDNA in hematopoietic cells of transplanted mice. Blood 86: 491–501.

    PubMed Google Scholar

  126. Hay JG, Elvaney NG, Herena J, Crystal RG (1995). Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR CDNA adenovirus gene transfer vector. Hum Gene Ther 6: 1487–1496.

    PubMed Google Scholar

  127. Knowles MR, Hohneker KW, Zhou Z, Olsen JC, Noah TL, Hu PC, Leigh NW, Engelhardt JF, Edwards LJ, Jones KR, Grossman M, Wilson JM, Johnson LG, Boucher RC (1995). A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. New Engl J Med 333: 823–831.

    PubMed Google Scholar

  128. Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993). Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75: 207–216.

    PubMed Google Scholar

  129. Fender P, Ruigrok RWH, Gout E, Buffet S, Chroboczek J (1997). Adenovirus dodecahedron, a new vector for human gene transfer. Nature Biotechnology 15: 52–56.

    PubMed Google Scholar

  130. Blau HM, Springer ML (1995). Gene therapy – a novel form of drug delivery. New Engl J Med 333: 1204–1207.

    PubMed Google Scholar

  131. Morgan RA, Anderson WF (1993). Human gene therapy. Ann Rev.Biochem 62: 191–217.

    PubMed Google Scholar

  132. Friedmann T (1996). Human gene therapy – an immature genie, but certainly out of the bottle. Nature Medicine 2: 144–147.

    PubMed Google Scholar

  133. Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA, Davies KA (1991). Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352: 815–818.

    PubMed Google Scholar

  134. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK (1996). Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Medicine 2: 534–539.

    PubMed Google Scholar

  135. Dunbar CE (1996). Gene transfer to hematopoietic stem cells: Implications for gene therapy of human diseases. Ann Rev Med 47: 11–20.

    PubMed Google Scholar

  136. Bonini C, Gerrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C, Bordignon C (1997). HSVTK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276: 1719–1724.

    PubMed Google Scholar

  137. Trogan J, Blossey BK, Johnson TR, Rudling SD, Tykocinski M, Ilan J, Ilan J (1992). Loss of tumorigenicity of rat glioblastoma directed by episomebased antisense cDNA transcription of insulin-like growth factor I. Proc Natl Acad Sci USA 89: 4874–4878.

    PubMed Google Scholar

  138. Miller AD (1992). Human gene therapy comes of age. Nature 357: 455–460.

    PubMed Google Scholar

  139. Mulligan RC (1993). The basic science of gene therapy. Science 260: 926–932.

    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Hood College, 401 Rosemont Avenue, Frederick, MD, 21701-8575, USA

    Ann Lewis Boyd

About this article

Cite this article

Boyd, A.L. Gene transfer: A prelude to gene therapy. Methods Cell Sci19, 231–242 (1998). https://doi.org/10.1023/A:1009752302208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009752302208

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gene Therapy
  • Gene Transfer

nest...

batman iftar saati 2021 viranşehir kaç kilometre seferberlik ne demek namaz nasıl kılınır ve hangi dualar okunur özel jimer anlamlı bayram mesajı maxoak 50.000 mah powerbank cin tırnağı nedir